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1.  MOTIVATIONS AND AIMS 
 
Recent years have seen an increasing interest in the performance of environmental prediction 
systems in polar regions, driven mainly by three factors: i) the Arctic amplification of climate 
change signal, and the risks and opportunities associated with anthropogenic induced global 
warming; ii) increasing human activities in these regions, such as land and marine 
transportation, tourism, natural resources exploitation, fishing and other related economic 
activities; and iii) the linkages, interactions and impacts that polar weather has on mid-
latitudes.  
 
The main goal of the Year of Polar Prediction (YOPP) is to improve understanding and the 
representation of key polar processes in numerical weather and climate prediction models. 
Given the dependence between polar and mid-latitude weather, one of the YOPP secondary 
outcomes is to enhance large-scale predictive skill beyond polar regions. To achieve these 
goals, YOPP is coordinating an extensive period of intensive observing and modelling activities 
(mid 2017 - mid 2019), along with verification, user-engagement and educational activities. 
 
The identified major verification goals within YOPP are to: i) obtain quantitative knowledge of 
model performance (both for model developments and for user-relevant applications); and ii) 
compare (different systems) and monitor progress with respect to the present-day base-line 
model performance. These seemingly simple goals in reality encompass a large spectrum of 
verification tasks. 
 
Some key factors need to be considered in order to implement and apply a successful 
verification strategy.  Specifically, the following questions must be answered: 
 
1. Who are the verification end-users (e.g. modellers or forecast end-users, such as 

navigation companies)? 
2. What are the verification purposes (e.g. diagnostics or administrative)? 
3. What questions need to be addressed (e.g. model predictability limit) and/or what are 

the forecast attributes of interest (e.g. timing for onset and clearance of fog)? 
4. What type of forecast is to be verified (e.g. deterministic -continuous or categorical- or 

probabilistic)? 
5. What are the statistical characteristics of the variables to be verified (e.g. smooth 

upper-air variables, such as geopotential height and temperatures, or spatially-episodic 
and discontinuous variables, such as precipitation or sea-ice)? 

6. What are the available matching observations (e.g. in situ measurements or satellite-
based spatial observations)? 

 
The first three points aim to properly formulate the verification questions, whereas the last 
three points address some of the technical aspects of the verification strategy to be 
implemented. No single verification technique can possibly address all verification 
users/purposes/questions and/or be suitable for all forecasts/variables/observation types; each 
verification strategy should be tailored to the users’ needs and their verification purposes and 
questions, and on the forecasts and variables verified, as well as the corresponding available 
observations. In this report we aim to provide some recommendations for verification of 
environmental prediction systems in polar regions, with the choice of recommended 
verification strategies based on the aforementioned factors.
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1.1  Verification purposes and end-users 
 
Prediction, and therefore also verification, within YOPP addresses a wide and heterogeneous 
community of users. On one side there are Numerical Weather Prediction (NWP) developers, 
who need informative diagnostics for better understanding the capability and/or shortcomings 
of current numerical models in reproducing key polar physical processes. Summary verification 
scores are used by weather services, model developers, researchers and generic users for i) 
assessing NWP forecast quality, including skill (e.g. versus persistence or climatology), ii) 
exploring the predictability limits of current NWP systems, iii) comparing different NWP 
systems (or different configurations and physics), iv) monitoring progress (e.g. comparing pre-
YOPP and post-YOPP performance), v) comparing forecast performance in the mid-latitudes 
versus polar regions. Summary verification scores can also be exploited by sophisticated 
forecast end-users through application of cost/loss scenarios to measure the value added by 
NWP forecasts in polar regions. Finally, forecast end-users such as commercial business and 
government departments (e.g. marine transportation, aviation) might benefit from easy-to-
interpret physically meaningful verification metrics specifically designed to respond to their 
needs, to help planning of their activities. This list is not exhaustive, but already encompasses 
a large variety of user needs; in particular, a variety of variables and different forecast time-
scales and lead-times, as well as different verification approaches must be adopted to address 
the different needs of the variety of forecast users. 
 
In this report, recommendations for the verification strategy to be adopted within YOPP are 
made with respect to three classes of users and verification purposes: diagnostics for model 
developers (Section 3.1); summary verification scores for administrative and generic purposes 
(Section 3.2); and physically-meaningful verification measures for forecast end-users (Section 
3.3). This latter class is vast (and could result in a wide variety of approaches); therefore in 
this report we focus only on verification of sea-ice predictions to illustrate the potential 
usefulness of some physically meaningful spatial verification approaches on one exemplar 
single variable. 
 
1.2 Variables and key polar processes 
 
Within the YOPP Implementation Plan, the following key variables and physical processes have 
been identified: 
 

• Basic (surface and upper-air) atmospheric variables: temperature and dew-point 
temperature, precipitation, cloud cover, relative humidity, wind (speed and direction), 
geopotential height, mean sea level pressure. 

• Environmental surface variables: sea-ice, snow at the surface (snow cover, snow 
thickness), permafrost (soil temperature). 

• Modelling challenges (processes/variables): 
• Coupling between atmosphere - land - ocean - cryosphere: in polar regions, 

verification could focus on the (presence/absence of) snow/sea-ice, and their 
effects on the interactions (e.g. flux exchanges) between land / ocean and 
atmosphere, as represented by numerical models. 

• Surface-atmosphere exchanges: these include the validation of the radiative 
transfer and the energy, moisture and momentum fluxes. As an example, 
variables of interest could be latent and sensible heat fluxes, which are 
related to the humidity and temperature vertical transport between the 
surface and the atmosphere. 
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• Stable boundary layer representation: this involves the analysis of boundary 
layer turbulence, and temperature and wind vertical profiles in stable 
regimes. 

• Effects of steep orography (e.g. orographically enhanced precipitation).  
• The representation of clouds, with specific focus on low-level mixed-phase 

clouds. 
• High Impact Weather: polar lows, low-level jets, topographically influenced flows such 

as katabatic winds and hydraulic shocks, extreme thermal contrasts, blizzards, freezing 
rain, fog.  

• User-relevant variables: Visibility, ceiling and icing (for aviation); sea-ice, fog and 
visibility (for navigation); ground conditions (e.g. snow, permafrost) for land transport. 

 
Different users might be interested not only in verifying different variables, but also in 
evaluating different aspects of the same variable. As an example, NWP model developers 
might be interested in sea-ice concentration (presence or absence) and sea-ice thickness, 
because of the sea-ice effects on the radiation budget (e.g. albedo) and surface atmospheric 
variables (e.g. surface air temperature), and because of the role sea-ice plays as a buffer 
between the ocean and the atmosphere (i.e. affecting energy fluxes and ocean-atmosphere 
coupling). Sea-ice pressure, on the other hand, is extremely important for shipping, for 
defining a navigation route. The specific variables/processes of interest for each of the users 
identified in Section 1.1 are listed in Section 3, along with recommended verification 
approaches. 
 
 
2.  OBSERVATION CHALLENGES 
 
Observations are the cornerstone of verification. However, polar regions are characterized by 
harsh environmental conditions and are hardly populated; hence surface-based observations 
are difficult to obtain and scarce. One of the greatest challenges of verification in polar regions 
is the limited amount of reliable observations. 
 
Surface observations are sparse and observation networks are usually not homogeneous 
across the domain (i.e. stations are often unevenly distributed in space, with observation 
network being more dense in more populated regions). In addition, observation sites are often 
not fully representative of the whole polar environment (e.g. most of the stations are located 
along the coast). Surface observations are also characterized by a strong seasonality, with 
fewer records in winter and more in the summer. Moreover, instrument failure can affect 
observations in the harsh polar environment, and observation uncertainty related to these 
faulty measurements is difficult to detect due to lack of nearby buddy-check stations. 
 
To date, only a few verification studies have addressed the issue of observation uncertainties 
and space-time representativeness of observations (or sampling uncertainty in space and 
time). Ciach and Krakewski (1999) proposed approaches for coping with observation errors in 
computation of root-mean-squared error (RMSE) values. Bowler (2008) considered how to 
incorporate observation uncertainty into categorical scores, and Santos and Ghelli (2011) 
propose a variation of the BSS that accounts for observation uncertainty. Ahrens and Jaun 
(2007) verified ensemble forecasts against ensembles of analyses obtained by stochastic 
interpolation of point observations, using the Brier Skill Score (BSS). Saetra et al. (2004) 
analyse the effects of observation errors on rank histograms and reliability diagrams. Candille 
et al (2007) evaluate the ensemble dispersion while accounting for the observation 
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uncertainty. Mittermaier (2014) explored the impact of temporal sampling on the 
representativeness of hourly synoptic surface temperature observations. Casati et al (2014) 
propose a spatial wavelet-based verification approach which accounts for the inhomogeneous 
spatial density of station observation networks across a domain. Some spatial neighbourhood 
verification approaches (e.g. Theis et al. 2005; Atger, 2001) can be applied to station 
observations, and the time dimension might compensate for station spatial sparseness. 
However, most of these approaches are still experimental and not used routinely in NWP 
verification. YOPP could serve as a test-bed for new research into verification approaches that 
account for observation sparseness and uncertainty (with a focus on the polar context), which 
would benefit NWP verification in general. 
 
Given the sparseness of surface observations in polar regions, YOPP will need to exploit 
satellite-based observations. A great advantage of satellite space-borne products is not only 
the enhancement of the observation spatial coverage, but also the availability of observations 
that are spatially defined, which enable, for example, the detection and comparison of spatial 
patterns. The availability of spatial observations opens the possibility of using modern spatial 
verification techniques (Gilleland et al. 2010). Spatial verification techniques account for the 
coherent spatial structure (and the presence of features) characterizing weather fields, and 
these approaches provide more physically meaningful and diagnostic results than traditional 
verification approaches. A concise review of these techniques is given in Annex A. 
 
Requirements for satellite space-borne atmospheric observations to be used for evaluation of 
polar predictions include a good representation of lower atmospheric structure (e.g. high-
resolution wind, temperature, moisture profiles), clouds (e.g. liquid versus ice phase profiles, 
particle size distributions, aerosol concentration and type) and snow-cover (depth, layering, 
snow water equivalent, melting ponds, albedo, temperature). However, the use of visible and 
infra-red (IR) satellite observations for characterizing the atmosphere in polar areas is 
currently limited, mostly because the lower troposphere is nearly isothermal and often cloud 
covered, and the optical properties of snow/sea-ice covered surfaces are difficult to 
characterize; these factors clearly limit the use and effectiveness of temperature and moisture 
sounder data. Verification activities in polar regions can significantly benefit from 
advancements in satellite technology and the use of several and diverse space-borne 
instruments (e.g. visible and IR can be complemented by passive microwave sounders). 
Verification techniques should account for the challenges and limiting factors of satellite 
retrievals in polar regions, for example, by including observation uncertainty in their scoring 
algorithm. Uncertainty in satellite-based observations can be quantified by using multiple 
observation products retrieved from different satellites (e.g. temperature and humidity can be 
retrieved from AMSU-A, AMSU-B and ATMS imageries onboard different satellites). Finally, 
atmospheric variables (e.g. temperature and humidity) retrieved from satellite observed 
radiances are synthesized based on physical and statistical remote-sensing assumptions, which 
possibly affect the verification results.  To mitigate the effects of these assumptions (and their 
associated uncertainties), verification can be performed with a model-to-observation approach, 
using, for example, model-simulated brightness temperatures for a direct comparison against 
satellite-retrieved brightness temperatures.  
 
Data assimilation algorithms are often used to harmonize and merge radiances from different 
satellites (as well as observations from different sources). These algorithms perform quality 
controls and bias corrections which can be influenced by the background state. This procedure 
introduces an undesired dependence between verifying observations and the model itself, 
which needs to be taken into account in the interpretation of the verification results (the 
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analysis-model dependence is further discussed later in this section). On the other hand, data 
assimilation algorithms rely on information on the model and observation errors, and could 
possibly be exploited for providing an estimate of the observation uncertainty. However, this 
should be investigated with caution: in fact, data assimilation performs several assumptions 
about the structure and dependencies of the background model and observation errors 
(Hollingsworth and Lönnberg, 1987), and the observation uncertainty is often inflated to 
optimize its use for data assimilation purposes (Liu and Rabier, 2003) therefore, the 
observation uncertainty used in the data assimilation process might not be optimal for 
verification purposes, but data assimilation statistics might still be informative, when non-
inflated estimates are considered (Desroziers et al. 2005). 
 
Satellite-based sea-ice products are crucial for navigation at high latitudes. In fact, space-
borne measurements can determine sea-ice concentration, thickness, and the location of 
icebergs. Moreover, satellite-based sea-ice tracking systems (e.g. Komarov and Barber, 2014; 
Figure 7) can provide information on the sea-ice drift and deformation (spatial gradients of 
sea-ice velocities). Some current operational sea-ice prediction systems have sufficiently high 
spatial resolution (5 to 1 km), which allows them to simulate features such as leads and 
pressure ridges. However, the resolution of certain technologies of satellite imagery is still 
coarse (~50km for SSMIS passive microwave sounders), and these small-scale phenomena 
are not visible in their associated products. As a consequence, high-resolution sea-ice models 
can be penalized in verification practices for producing these non-observed small-scale 
features. Visible and infrared satellite products, e.g. from Advanced Very High Resolution 
Radiometers (AVHRR), can attain finer resolutions (up to 1 km) and observe the small scales 
of such user-relevant phenomena. However visible and infrared satellite imageries are still 
affected by the lack of contrast between cloud cover and sea-ice. Synthetic Aperture Radar 
(SAR) imagery such as Sentinel-1 and RADARSAT-2 are needed in order to match the high 
resolution of sea-ice models and correctly characterize sea-ice versus cloud cover (e.g. see 
Figure 1). Several advanced satellite-based sea-ice gridded products are already available 
from national ice services: these products include the ice charts produced by the Canadian Ice 
Service (http://ice-glaces.ec.gc.ca) and the sea-ice products produced by the National Oceanic 
and Atmospheric Administration (NOAA) Ice Mapping System (IMS; http://www.natice.noaa. 
gov/ims/index.html), which should be considered for sea-ice verification in YOPP. 
 
Verification against gridded datasets (and/or analyses) has two major advantages: i) the 
observation quality control, ingestion of the observation uncertainty, and representativeness 
issue are dealt with in the gridding process; and ii) the observation field is spatially defined 
(and it covers the whole space-time domain). The latter advantage makes it possible to 
implement spatial verification approaches (see Annex A) and opens more interesting options 
for informative graphical display of verification statistics, such as Hovmoller diagrams, zonally 
and meridionally averaged scores versus the lead time or a vertical profile, and so on (e.g. 
Figure 3). However, within the gridding process several assumptions are introduced; for 
example, the use of a kriging process to fill-in the space between point observations requires 
assumptions regarding the representativeness of the observations ingested. Verification 
against gridded datasets (and/or analyses) must be performed with awareness of the 
strengths and weaknesses of the specific gridded dataset used.   
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HH 

 

HV 

 
 

Figure 1.  RADARSAT-2  co-polarization (HH, left) and cross-polarization (HV, right) Synthetic 
Aperture Radar (SAR) images for the retrieval of sea-ice. The SAR technology can see through 

clouds. Moreover, the cross-polarization shows less incidence-angle dependence than the  
co-polarization, and is less sensitive to wind effects, so that the HV channel is more reliable  

than the HH channel for sea-ice detection.   
 
 
Source: Courtesy of Angela Cheng, Canadian Ice Service/Environment Canada 
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Figure 2.  (top) multi-category Heidke Skill Score (HSS) for several wind speed thresholds 
[0,3,8,17,24,max]  for the CMC Regional (red) and Global (blue) Deterministic Prediction 
Systems as a function of forecast time, evaluated against synoptic observations over the 
Metarea XVIII domain (covering most of the Canadian Arctic Islands) and (bottom) the 

corresponding 5-95 % confidence intervals calculated on the difference between the two 
models, for the period January 1 to December 31, 2014.  

Confidence intervals are evaluated by block bootstrapping.  
 

 
Source:  Courtesy of François Lemay and Tom Robinson, Canadian Meteorological Centre/Environment   
  Canada 
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Figure 3.  (left) zonally averaged bias of geopotential height at different vertical levels and 
(right) Hovmoller diagram (longitude-time) of the error standard deviation of geopotential 
height at 500 hPa meridionally averaged over the North Polar Region, for a 48h lead time 
experimental run of the CMC global deterministic prediction system versus ERA-interim 

analysis. Left panel: the geopotential height in the Antarctic is affected by a large positive 
bias, for all vertical levels; the Arctic is affected by a positive bias in the troposphere; northern 

mid-latitudes exhibit a strong negative bias in the stratosphere. The Hovmoller diagram 
displays an example of flow-dependent error propagation.  

 
 
Source: Courtesy of Stephane Laroche and C. Charette (RPN/MRD/EC) 
 
 
 
Verification of a model-based forecast against its own model-based analysis is affected by their 
inter-dependence (e.g. Figure 4), and it is therefore essential to acknowledge the caveats and 
drawbacks associated with this verification practice. As an example, Park et al. (2008) 
compare the performance of eight ensemble prediction systems from the TIGGE archive 
against analyses, and show that verification of each EPS against their own analysis leads 
always to the best score: thus, caution in the interpretation of the verification results must be 
used when ranking different numerical prediction systems by verifying them against a single 
model-based analysis. Similarly, decisions on the developments of a numerical model should 
not be based (solely) on verification results against its own analysis, since this might lead to 
drifting away from reality. Verification studies that assess the impact of using model-
dependent analyses (versus observations) are sought (such impacts are expected to be larger 
in polar regions than in mid-latitudes, due to the limited numbers of observations).  
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Figure 4.  Bias (dashed curves) and error standard deviation (continuous curves) of the final 

cycle of the CMC Global Deterministic Prediction System with (red) the Yin-Yang grid and 
(blue) the operational uniform longitude-latitude grid, evaluated from 15th Dec 2014 to 15th 
Feb 2015 in the North Polar Region. Inference on the differences between the scores of the 
two systems is performed with a permutation test: significance levels are listed along the 

vertical axes, on the left for the bias and on the right for the error standard deviation, with red 
shading indicating an improvement of the Yin-Yang versus lat-lon grid. As expected for these 
short lead times (24h), verification against own analysis (right panel) shows better statistics 

than verification against ERA-interim (left panel).  
 
 
Source: Courtesy of Stephane Laroche and C. Charette (RPN/MRD/EC) 
 
 
Model biases in polar regions are large compared to the biases in mid-latitude regions, and 
data assimilation systems are sub-optimally adapted to polar conditions; thus, many 
observations are rejected or given inappropriate weight. As a result, model-based analyses in 
polar regions might lean towards their background model, more than for mid-latitudes. Bauer 
et al (2014) compare five analyses from the TIGGE multi-model ensemble in the Arctic: they 
found that the spread between the TIGGE multi-model analyses exhibits much larger 
discrepancies with respect to the analysis uncertainty estimated by a single-model ensemble 
data assimilation system. They conclude that neither current multi-model analyses (possible 
over-dispersive) nor ensemble data assimilation (possibly under-dispersive) properly represent 
polar analysis uncertainties. YOPP could serve as a platform for enhancing synergies between 
the verification and data assimilation communities: verification could better inform data 
assimilation about model biases, observation errors, spatial and temporal representativeness 
issues in polar regions; data assimilation could use that information in their error models and, 
in return, provide a vast number of observation-model statistics from the assimilated data. 
Both communities could gain from shared knowledge on representativeness and observation 
uncertainties, and shared tools for (model-independent) quality controls. 
 
A good verification practice is to perform verification solely against analysis values which are 
based on recently assimilated observations (as opposed to model-based values): as an 
example, Lemieux et al (2016) performed a model-to-analysis verification which solely 
considered the analysis grid-points where the latest-assimilated satellite-based observation is 
more recent than 12 hours. Verification against multiple gridded datasets and/or analyses is 
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recommended: the uncertainty/spread between analyses/gridded observation datasets should 
be an order of magnitude smaller than the forecast error. The assessment of models versus 
analysis uncertainties and errors can be accomplished by using multiple models (e.g. TIGGE, 
YOTC, Transpose AMIP) and multiple re-analyses (e.g. ERA-Interim/20C, JRA-55, MERRA-2, 
Arctic System Reanalysis, Climate Forecast System Reanalysis). Some verification scores and 
statistics (e.g. Brier Score, CRPS, KS distance) can directly compare the distributions derived 
from an ensemble prediction system (or an ensemble of different models) and an ensemble of 
analyses. 
 
Different challenges are associated with each observed variable because the verification 
observations associated with each variable are obtained from measurements with different 
characteristics, with different uncertainties and that are synthesized based on different 
assumptions. The strengths and weakness of each variable and (gridded) observation dataset 
should be known: accomplishing this is challenging since it encompasses expertise from many 
different fields. Where possible, YOPP verification tasks should be repartitioned (especially for 
specific user-relevant variables) to represent the interests of each involved 
agency/stakeholder. 
 
 
3.  VERIFICATION APPROACHES 
 
3.1  Model diagnostics 
 
Model diagnostic verification aims to assess specific model behaviours, for a better 
understanding and improvement of key physical processes and their representation in 
numerical modelling. Such process-based diagnostic verification is used to compare different 
NWP physical schemes and parameterizations. The end-users of such process-based diagnostic 
verification are de-facto the model developers. 
 
Process-based diagnostic verification usually assesses all the physical aspects of a few targeted 
and well-observed cases studies. These case studies are often identified within an intensive 
observing period with high resolution and high frequency observations. Process-based 
diagnostic verification within YOPP could be performed at super-sites, which comprises multi-
variate observations with high temporal resolution. The Arctic super-sites identified in the 
YOPP Implementation Plan include Sodankylä (FMI Arctic research centre, http://fmiarc.fmi.fi); 
Svalbard Integrated Observing System (SIOS http://www.sios-svalbard.org/); International 
Arctic Systems for Observing the Atmosphere (IASOA, http://www.iasoa.org) stations such as 
Tiksi, Summit, Eureka, Alert, Barrow; and the Russian drifting North Pole station. In the 
Antarctic the super-sites include Dome-Concordia and South Pole. Observations from the 
Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAIC) campaign could 
be valuable for a post-YOPP evaluation of improved NWP systems’ capabilities. 
 
Model diagnostics often address the verification of specific physical processes, where model 
outputs are compared with observations of process-specific physical variables (e.g. latent and 
sensible heat fluxes). For example, the GABLS-4 project (http://www.cnrm.meteo.fr/ 
aladin/meshtml/GABLS4/GABLS4.html) undertook an intercomparison of the capabilities of 
several single-column, land-surface, and large-eddy simulation models to represent a strongly 
stable boundary layer in Antarctica: model evaluation focused on turbulent fluxes of 
temperature, humidity and momentum. Process-based model diagnostics are very specific and 
ideally should be undertaken by (or outlined in close collaboration with) model developers. 
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Some of the key model processes in polar regions, and associated physical variables, have 
already been listed in Section 1.2. Note that evaluation of these processes involves verification 
of process-specific physical quantities (e.g. energy, moisture and momentum fluxes; radiation 
budget), beyond traditional surface and upper-air physical variables. These model-specific 
variables are sometimes not directly observed; in these cases, model behaviour is usually 
assessed based on theoretical expected outcomes, or against analyses (which also include 
model-specific variables). Model diagnostics against analyses can be informative and can be 
practiced, as long as caveats with respect to verification against model-based analyses and 
gridded observation products are known and accounted for (see discussion in Section 2). In 
general, it is recommended that assessment of different model configurations and 
parameterizations should be based on comparisons to actual observed values, or by using 
model-simulated retrieved variables (e.g. brightness temperature) to more directly evaluate 
measured phenomena. 
 
In current practice, model diagnostics favour the use of simple yet informative summary 
statistics (e.g. the additive bias) graphically displayed along the vertical profile (e.g. Figures 4 
and 5) and/or for the diurnal cycle and/or zonal averages (e.g. Figure 3, left panel). A 
meaningful graphical display, in this context, is fundamental; for example, a Hovmoller 
diagram can help detect flow-dependent error propagation (Figure 3, right panel). Direct visual 
(eye-ball) verification of the observed and modelled physical variables/phenomena of interest 
is often the most effective approach.  
 

 

 
 

Figure 5. Right panel: bias (dashed curves) and error standard deviation (continuous curves) 
of the final cycle of the CMC Global Deterministic Prediction System with (red) the Yin-Yang 

grid and (blue) the operational uniform longitude-latitude grid, against radiosondes, 
evaluated from 15th Dec 2014 to 1st March 2015 in the North Polar Region (left panel). 
Inference on the difference between the scores of the two systems is performed with a 

standard t-test for the bias and F-test for the error standard deviation, for paired samples; 
significance levels are listed along the vertical axes, on the left for the bias and on the right 

for the error standard deviation, with red shading indicating an improvement of the Yin-Yang 
versus lat-lon grid.  

 
 
Source: Courtesy of Stephane Laroche and Michel Roch (RPN/MRD/EC) 
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Current model diagnostics tend to still focus on individual parameters. However, given the 
importance of better understanding the entire physical process (characterized by strong 
interactions between the different physical variables), model diagnostics could be more 
informative through use of multi-variate statistics. 
 
Some of the recently developed spatial verification approaches (see Annex A) could be useful 
for diagnosing model processes. As an example, field-deformation and feature-based 
approaches could provide feedback on model advection. High-resolution models could benefit 
from neighbourhood verification approaches. Timing errors associated with the offset of 
specific physical processes and/or weather phenomena can be assessed by the use of lag 
correlation of time series, possibly within a neighbourhood verification approach. 
 
Aggregation across multiple cases (or for a season) can provide more robust statistics; 
however, a targeted stratification (or conditional verification) can provide more informative 
verification results. As an example, conditional verification performed on multiple variables 
targeting a specific process (e.g. liquid precipitation in the presence of a temperature 
inversion, whereby temperature near the ground is below freezing, for freezing rain) can help 
diagnose process-related model deficiencies. Model developers are encouraged to optimize the 
delicate balance between aggregation and stratification (i.e. conditional verification). Inference 
in model diagnostics is essential, given that model diagnostics typically aim to compare the 
effects of different model configurations and parameterizations. Inference is briefly discussed 
in the next session. 
 
3.2  Summary verification scores 
 
Verification of the basic surface and upper-air atmospheric variables should be used for 
monitoring and comparing NWP systems. As minimum standard, YOPP should aim to meet the 
WMO Commission for Basic Systems (CBS) recommendations (WMO-485, WMO-893, Haiden et 
al. 2014, WMO-1091) summarized in Tables 1a,b. CBS mandatory and additional 
recommended surface and upper-air variables are: 2m temperature, 2m dew-point 
temperature, 2m relative humidity; 24h and 6 h accumulated precipitation; 10m wind speed 
and direction; total cloud cover; mean sea-level pressure (mslp); relative humidity, wind 
components and geopotential heights at different vertical levels (850, 500, 250, 100 hPa). 
Additional vertical levels could be considered (e.g. to sample the stratosphere). Moreover, the 
CBS recommends to compute scores for forecasts initiated at 00:00 and 12:00 UTC separately, 
with a frequency of 12 hours for upper-air variables, and a frequency of 6 hours (3 hours up to 
T+72 hour forecast lead-time) for surface variables. Note that these recommendations are 
based on the minimum standards, documented in the Manual of the Global Data-Processing 
and Forecasting System (WMO-485), for availability of NWP fields by NWP producing centers, 
and are constrained by observation frequencies. If YOPP benefits from more frequent surface 
and/or upper-air observations, verification initial times and frequencies should adapt 
accordingly (e.g. higher verification frequency could better detect signals related to the diurnal 
cycle). 
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Table 1a. Simplified summary of CBS standards (pending confirmation by CBS in 2016 for 
surface variables) for verification of deterministic NWP products. Upper-air variables and 
levels shown for extra-tropics only. Listed are mandatory requirements, with additionally 

recommended items in parentheses. 
 

 Upper air Surface 
Variables Mean sea-level pressure, geopotential 

height, temperature, wind (relative 
humidity) 

2m temperature, 10m wind speed and 
direction, 24h precipitation (total cloud cover, 
6h precipitation, 2m relative humidity, 2m 
dew-point) 

Levels (hPa) 850, 500, 250 (100)  
Frequency 24 h (12 h) 6 h up to T+72h, 12 h afterwards (3 h up to 

T+72h, 6 h afterwards) 
Scores Mean error, root mean square error, 

anomaly correlation, S1 score for mslp  
(mean absolute error, rms forecast and 
analysis anomalies, standard deviation of 
forecast and analysis field) 

Mean error, mean absolute error, root mean 
square error, contingency tables [see 
thresholds below] 

Thresholds for 
contingency 
tables 

 
10-m wind speed: 5, 10, and 15 m s

-1
 

24-h precipitation: 1, 10, and 50 mm 
6-h precipitation: 1, 5, and 25 mm 
Total cloud cover: 2 okta, 7 okta 

Interpolation Nearest grid-point on native model grid; 
interpolation to 1.5x1.5 deg grid for 
verification against analysis 

Nearest grid-point on native model grid 

 
 
 

Table 1b. Simplified summary of CBS standards (pending confirmation by CBS in 2016)  
for verification of probabilistic NWP products. 

 
Variables Mean sea-level pressure, 500 hPa geopotential height, 850 hPa temperature, 

850 hPa wind speed, 850 and 250 hPa wind components, 24h precipitation 
Frequency 24 h 
Scores Continuous ranked probability score (CRPS) 

Brier Skill Score (with respect to climatology)  
Relative Operating Characteristic (ROC) 
Relative economic value (C/L) diagrams 
Reliability diagrams with frequency distribution 
Spread (standard deviation of ensemble) 

Thresholds for 
contingency 
tables 

PMSL anomalies: ± 1, ± 1.5, ± 2 standard deviations  
500 hPa geopotential height anomalies: ± 1, ± 1.5, ± 2 standard deviations 
850 hPa wind speed: 10, 15, 25 m s-1 
850 and 250 hPa u and v wind components: 10th, 25th, 75th and 90th 
percentiles 
850 hPa temperature anomalies: ± 1, ± 1.5, ± 2 standard deviations 
24h precipitation: 1, 5, 10, and 25 mm  
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Traditional summary measures of performance and skill are recommended. 
 

• Continuous scores are recommended for deterministic forecasts of continuous, 
normally distributed and spatially smooth variables (e.g. temperature, sea-level 
pressure, geopotential height). Continuous scores include bias, MSE, MSE Skill Score 
(versus persistence and climatology), MAE, (anomaly) correlation, S1 score. The 
performance of several NWP systems can be compared by displaying their continuous 
scores on Taylor (2001) diagrams. 

• Categorical verification is recommended for deterministic forecasts of right-skewed, 
episodic or spatially discontinuous variables (e.g. precipitation, wind, clouds). 
Categories are defined by user-relevant thresholds, and then categorical scores are 
evaluated from the contingency table entries. These includes: FBI, TS and ETS, PC, 
HSS, OR, YQ. Summary performance diagrams (e.g. Roebber, 2009) can be used to 
display several categorical scores and compare different models.  

• Traditional continuous and categorical verification scores degenerate to un-informative 
trivial values as events becomes rarer (Stephenson et al 2008). Extremes dependence 
indices (EDS, EDI, SED, SEDI) are recommended for the verification of extreme and 
rare events (Ferro and Stephenson, 2011). 

• Recommended verification approaches for ensembles and probabilistic forecasts 
include: the Brier Score and Brier Skill Score (and their 
resolution+reliability+uncertainty decomposition), the CRPS (and its 
resolution+reliability decomposition), ROC and reliability diagrams, Rank histograms 
and the dispersion score obtained from the Reduced Centered Random Variable (RCRV; 
Talagrand et al. 1999; Candille et al. 2007), discrimination diagrams and the 
Generalized Discrimination Score (Weigel and Mason, 2011), and the analysis of the 
ensemble error-spread relationship (Christensen et al. 2014). Several examples of 
ensemble verification can be found on the TIGGE museum webpage 
(http://gpvjma.ccs.hpcc.jp/TIGGE), developed and maintained by Prof. M. Matsueda, 
and in Jung and Matsueda (2014), Jung and Leutbecher (2007). 

 
Summary verification scores can provide information on several aspects of the model 
performance and serve several purposes (beyond monitoring and comparing forecasting 
systems). Traditional skill scores can assess model performance versus persistence and 
climatology, and investigate the predictability limits of present NWP systems in Polar Regions: 
for example, predictability (e.g. in terms of forecast lead-time) might be a base-line to be 
beaten within the YOPP modelling effort. Predictability as a function of forecast origin time can 
reveal key processes and variables which (when assimilated) lead to significant improvements 
in polar prediction capabilities: this kind of information could be relevant for both model 
developers and some forecast end-users (e.g. Day et al. 2014). As an example, early season 
sea-ice extent affects the length of the navigation season: since sea-ice seasonal forecasts 
initiated in June have enhanced predictive power, they should be prioritized by shipping 
companies in their planning. Traditional ensemble diagnostics can assess the consistency of 
the different NWP forecasts (e.g. the ensemble error-spread relationship), and possibly can 
help identify the regions / processes / variables characterized by large spread (i.e. model 
uncertainty).  
 
A primary goal for verification within YOPP is to identify the sources of systematic forecast 
errors; while aggregation is fundamental in order to obtain useful and potentially significant 
verification results, an optimal and tailored stratification can be crucial for revealing process-
related or flow-dependent errors. Conditional verification performed on specific weather 
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regimes (e.g. Crocker et al. 2014) or on multiple variables targeting a specific process (e.g. 
liquid precipitation in the presence of a temperature inversion, whereby temperature near 
ground is below freezing, for freezing rain) can help diagnose some flow-dependent systematic 
errors and/or process-related model deficiencies.  
 
Spatial verification approaches (see Annex A for a concise review) can also help characterize 
the origin of the forecast errors: as an example, Jung and Leutbecher (2008) apply a scale-
separation verification approach and quantify the contribution of planetary, synoptic and sub-
synoptic scales to the total skill. They analyse the scale dependency of the spread-skill 
relationship and find that the ECMWF ensemble is over-dispersive at the synoptic scales, with 
maximum spread and error corresponding to the North Atlantic and North Pacific storm track. 
More recently, Buizza and Leutbecher (2015) investigated the effect of spatial and temporal 
filtering on forecast skill, showing that while instantaneous, grid-point fields have forecast skill 
out to between 16 and 23 days, large-scale, low frequency filtered fields have skill even 
beyond this range. Note that these conditional and spatial verification approaches, despite 
being discussed in this generic section on summary performance measures, are process-
informative and can obviously also be used for model diagnostics. 
 
Detection of flow-dependent errors (e.g. with Hovmoller diagrams) and spatial verification 
approaches (alongside traditional verification approaches) can be crucial also for assessing the 
impacts of improved polar prediction on the predictability of mid-latitude weather. Given the 
response-time of coupled ocean-atmospheric numerical systems, long lead-time (ensemble) 
forecasts (10 to 30 days) are needed to explore the linkage between polar regions and mid-
latitudes. 
 
All verification scores / model comparisons should be accompanied with confidence intervals 
and/or significance tests. When comparing different models (or different configurations / 
schemes / parameterizations of the same model) it is preferable to perform the inference on 
the difference of the verification scores for paired samples. Inference on verification results can 
be performed either by traditional parametric tests (Wilks, 2011, chapter 5; von Storch and 
Zwiers, 1999, chapter 6; Jolliffe, 2007) or by re-sampling and permutation tests and 
bootstrapping (Efron and Tibshirani, 1993; Gilleland, 2010). Non-parametric re-sampling 
methods (e.g. bootstrapping) provide an intuitive and distribution-free approach for 
performing statistical inference on verification results. Figures 2, 4, 5 show some examples of 
significance tests for the verification of the CMC/ECCC Global Deterministic Prediction System 
(GDPS). 
 
3.3  Physically-meaningful user-oriented verification for sea-ice prediction 
 
Sea-ice models play a key role in environmental prediction for polar regions, by providing ice 
products for polar marine users as well as a boundary forcing factor for atmospheric prediction. 
Sea-ice is characterized by several attributes and features:  
 

• Sea-ice concentration (defined as the fractional area covered by sea ice, e.g. within a 
model grid-box), and its derivatives 

• Sea-ice extent (defined as the total area covered by sea ice with a sea-ice 
concentration exceeding a specified threshold)  

• Sea-ice edge (defined as the sea-ice extent boundary position) 
• Sea-ice thickness (which plays a central role in predictability as sea ice operates as a 

buffer between the ocean-atmosphere interactions)  
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• Sea ice stage of development (which is partially correlated with sea-ice thickness: 
usually the older the ice, the thicker)  

• Sea-ice pressure (which is the negative average of the normal ice stresses)  
• Sea-ice drift (which is mostly determined by the air-ice stress, the ice-ocean stress 

and the ice interaction term, i.e. the sea-ice rheology) 
• Sea-ice deformation (which can lead to formation of leads and pressure ridges, or to 

the opening of polynias) 
• Sea-ice floes and icebergs.  

 
Many of these attributes (especially sea-ice pressure and icebergs) are critical for navigation 
safety. In this report, recommendations for sea-ice verification address, on one hand, the 
needs of the model developers, and, on the other hand, they target the maritime transport 
sector (safety of high latitude navigation), from an end-user perspective. 
 
Sea ice is characterized by a coherent spatial structure, with sharp discontinuities and linear 
features (e.g. leads and ridges), the presence of spatial features (e.g. ice-shelves and 
icebergs), and a multi-scale structure (e.g. agglomerates of floes of different sizes). Several 
satellite-based products are available (e.g. for sea-ice concentration and thickness) and can 
provide spatially-defined sea-ice observations. Sea ice can benefit from the enhanced 
diagnostic power of spatial verification approaches. In Annex A we provide a concise review 
and general framework for existing spatial verification techniques. In what follows we suggest 
some specific spatial verification methods (in addition to traditional verification approaches) for 
each of the above-mentioned sea ice attributes and features. 
 
Sea-ice concentration is the sea ice covered areal fraction: it is a continuous variable which 
ranges in the interval [0,1], where a value of zero corresponds to open water, and a value of 
one corresponds to a sea that is fully ice covered. Sea-ice concentration is characterized by a 
U-shaped distribution, which becomes a uniform distribution as we exclude its extremes (i.e. 
open water and full ice). As a base-line, we recommend verification of sea-ice concentration 
using traditional continuous and categorical verification scores (e.g. Lemieux et al. 2016). 
Seasonal forecasts and climate projections focus mainly on the extent of the whole sea-ice 
pack. Forecasts at shorter lead times (e.g. 48 hours), on the other hand, are more interested 
in capturing the sea-ice evolution within the Marginal Ice Zone (MIZ), which is the transition 
region between ocean open-water and full sea-ice cover. The MIZ is the region where the 
“action” takes place, including sea-ice freeze-ups and melt-downs, and it corresponds to the 
sea-ice concentration values of the U-shaped distribution belonging to (0,1), excluding its 
extremes. Traditional verification statistics evaluated over the whole sea-ice concentration 
values are bound to be dominated by the extremes of the U-shaped distribution (i.e. open 
water and full sea-ice coverage). For short-range forecasts, in order to obtain more meaningful 
statistics, verification of sea-ice concentration should focus on the MIZ, and exclude the 
majority of open-water and full sea-ice covered grid-points. In order to restrict verification to 
the MIZ, as an example, scores can be evaluated solely for grid-boxes where (gridded) 
observations and model have changed with respect to the previous day or week (e.g. van 
Woert et al. 2004). Following this approach, it is natural (and recommended) to compare 
verification results against persistence. 
 
Verification of sea-ice concentration with categorical scores requires thresholding. An issue 
associated with thresholding is that the natural threshold used to distinguish between ice and 
water can be different in gridded observation products with respect to the model. As an 
example, Smith et al. (2016) verify sea-ice concentration from the Canadian Global Ice Ocean 
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Prediction System (GIOPS) model versus the ice-extent produced by the NOAA IMS (Helfritch 
et al. 2007), and show the sensitivity of categorical verification scores to the threshold choice. 
The IMS ice-extent is defined by using a 40% threshold of the NOAA satellite-based sea-ice 
concentration gridded analysis. The natural thresholding for GIOPS, on the other hand, is 20% 
sea-ice concentration, because within GIOPS a sea-ice concentration smaller than 20% is 
associated (during the ocean assimilation process) with above freezing sea surface 
temperatures, whereas a concentration greater than 20% is associated with below freezing sea 
surface temperatures. The use of multi-categorical verification scores, where multiple 
thresholds are considered, can help address (at least partially) this issue. A multi-category 
contingency table can be evaluated based on different user-relevant thresholds. The entries of 
this table are then combined and weighted by the entries of a scoring matrix which is defined 
to balance-out rewards and penalties, while accommodating different users’ perspectives. 
 
Thresholding of sea-ice concentration leads to the definition of sea-ice extent and of the sea-
ice edge. Categorical approaches are the natural verification method to analyse these sea-ice 
attributes (in fact, categorical verification of sea-ice concentration is, de facto, verification of 
the sea-ice extent). Issues associated with the thresholding (e.g. sensitivity of the verification 
results to the threshold choice) also affects the verification of sea-ice extent and sea-ice edge. 
 
Sea-ice extent and sea-ice edge are more naturally verified spatially. Distance measures for 
binary images, such as the mean distance and metrics from the Hausdorff family, have been 
used to verify sea-ice extent (Dukhovskoy et al. 2015). Distance measures from pattern 
recognition and edge detection theory, such as the Fréchet distance (Heinrichs et al. 2006) or 
simply geographical distance measures (Hebert et al. 2015) have been used to verify the ice-
edge location (Figure 6). These metrics provide physically meaningful and easy-to-interpret 
verification results (i.e. a distance in km), and therefore they are particularly suitable for user-
relevant applications.  
 
Most of the current operational sea-ice prediction systems are designed to represent the 
evolution of the sea-ice concentration as a whole, rather than explicitly resolving individual 
floes, and solely a few sea-ice models start representing the evolution of floe-size distribution 
(e.g. Horvat and Tziperman, 2015). As largangian particle-based sea-ice models develop 
towards explicitly resolving size and evolution of individual floes (e.g. Rabatel et al. 2015), 
spatial verification techniques which enable assessment of the complex multi-scale structure of 
floes (as an example, scale-separation methods, or feature-based approaches as MODE or 
SAL) could also be explored for the verification of sea-ice concentration; given the sharp 
discontinuities and presence of (often uncountable small-scale) features, neighbourhood 
methods (such as the Fraction Skill Score) could be used to avoid double penalties while 
accounting for the small drift errors; finally, field-deformation approaches (e.g. DAS or image 
warping) could be used to quantify these small sea-ice drift errors. Note that with the 
neighbourhood methods, deterministic sea-ice forecasts can become probabilistic products 
(e.g. Theis et al. 2005), and probabilistic scores can be used for their evaluation. 
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Figure 6. Distance to ice edge. Left: graphical display of distances between forecast and 

observed ice edge, which are used to evaluate the (partial and modified) Hausdorff distances 
(analysis and image is courtesy of Angela Cheng, Canadian Ice Service/Environment Canada). 

Right: verification of the RIPS sea-ice model versus IMS sea-ice observations for the entire 
2011 year, by using the median, mean and max distance to ice edge (analysis and image are 
courtesy of J.-F. Lemieux, RPN/ MRD / Environment Canada). These distances belong to the 

family of the Hausdorff metrics. 
 
 
Goessling et al (2016) introduce the integrated ice-edge error (IIEE), a user-relevant and 
intuitive verification measure for assessing sea-ice edge and extent. The IIEE is defined as the 
area where the forecast and the observations disagree on the ice concentration being above or 
below 15%. The IIEE can be decomposed into an absolute extent error (AEE, corresponding to 
the common sea-ice extent error), and a misplacement error (ME = IIEE - AEE). This approach 
bridges the traditional categorical scores to spatial verification approaches which quantify 
displacement errors (such as the object-oriented methods) and provides simple yet 
informative verification results. Moreover, a probabilistic metric for the verification of contours, 
termed the spatial probability score (SPS), has been introduced recently as the spatial integral 
of local Brier Scores (Goessling, personal communication). When applied to deterministic ice 
edge forecasts, the SPS is reduced to the IIEE, allowing to verify deterministic and probabilistic 
sea-ice forecasts in a common framework. 
 
Sea-ice thickness is continuous and positive-defined (its values are bounded at the lower end 
by zero), and is characterized by a mixed (zero versus no-zero) and right skewed distribution. 
Spatially, sea-ice thickness exhibits a coherent spatial structure which can be smooth (e.g. in 
correspondence with land fast ice), but can also exhibit spatial discontinuities (e.g. in regions 
of strong convergence and hence of significant deformation, such as north of Canada and north 
of Greenland) and can be affected by the presence of linear kinematic features (e.g. ridges). 
Observations of sea-ice thickness include in situ measurements but also thickness estimates 
from satellite-based sensors: the latter offer the potential of applying spatial verification 
approaches.  
 



 
 
 

 

19 

Verification of sea-ice thickness presents similar characteristics and challenges as verification 
of precipitation fields. As an example, traditional point-by-point continuous verification scores 
can be dominated by the few large thickness values (this is especially true for statistics defined 
by a quadratic rule, such as the MSE) and can be heavily affected by double penalties 
associated with small sea-ice drift errors. Categorical verification of sea-ice thickness mitigates 
the effect of the large values. Spatial verification approaches, such as neighbourhood methods, 
can help address the double penalty issue, and field deformation approaches can help quantify 
the contribution of the small drift errors. Numerical models can predict the sea-ice thickness 
distribution within a grid-cell: where observations support this (e.g. at a super-sites), sub-grid 
sea-ice thickness distributions can be verified by comparing the moments of these (observed 
and predicted) distributions, or by using probabilistic and ensemble verification scores, such as 
the Continuous Ranked Probability Score, or by using statistics which measure the distance 
between two sample distributions, such as the Kolmogorov–Smirnov distance. 
 
Sea-ice pressure represents perhaps the most critical variable for navigation safety. Sea-ice 
pressure is predicted by sea-ice prediction systems as a continuous variable, however ship 
observations report sea-ice pressure in categories, such as beset, severe, moderate, light, and 
absent. Multi-categorical verification scores are the natural approach for sea-ice pressure 
verification, where the model-produced continuous values are first calibrated and then 
thresholded, to be compared to the observed categories. Verification of sea-ice pressure 
presents several challenges, mainly associated with the observation procedures. As an 
example, the aforementioned categories are subjective and dependent on the type of ship 
reporting (e.g. a small vessel versus a large ice-breaker) and the number of categories in the 
reporting procedures can vary: these aspects add complexity in the model calibration 
procedure. Moreover, ships often do not report if no pressure was encountered: this practice  
introduces a sampling bias in the contingency table entries (the categories associated with no 
observed pressure are under-represented with respect to reality) and can invalidate the 
verification results. Quantitative (continuous) observation of sea-ice pressure are provided by 
sea-ice buoys: verification against these can help overcome some of the aforementioned 
issues, however the currently deployed buoys are very limited in number to achieve a 
representative spatial coverage and significant verification results. Finally, verification results 
of sea-ice pressure can suffer from severe representativeness issues. In fact, sea-ice pressure 
is highly discontinuous in space and can vary horizontally at the meter scale: the ice pressure 
exerted on a ship haul or measured by a in situ stress sensor is localized and represents a 
subgrid scale phenomena, when compared to the model-simulated pressure at the scale of a 
grid cell (on the order of a few km). Evaluation of sea-ice pressure would benefit from the 
development of downscaling methods. 
 
Sea-ice stage of development is usually expressed in categories such as nilas and new ice, 
grey ice and grey-white ice (young ice), (thin, medium, thick) first-year ice, second-year and 
multi-year ice. Multi-categorical scores are the natural verification approach for sea-ice 
stage of development. In satellite-based products the sea-ice stage of development is 
estimated from sea-ice optical properties: the assumptions behind the retrieval algorithms and 
sea-ice age classification introduce non-negligible uncertainties, and their effects on the 
verification results should be quantified. Spatially, sea-ice stage of development has similar 
characteristics as sea-ice concentration, and hence similar spatial verification approaches could 
be considered. 
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Sea-ice drift is a vector field, hence each grid-point value is characterized by a speed and a 
direction. Speed values are positive and right skewed, whereas directions are uniformly 
distributed in the range [0o, 360o]. Spatially, sea-ice drift has a fairly smooth coherent spatial 
structure, but can exhibit sharp discontinuities (e.g. caused by strong winds or currents, along 
shear lines, or along the offshore edge of landfast ice). Sea-ice observed drift trajectories are 
either measured by drifting buoys, or can be derived by using satellite imageries. Buehner et 
al (1997) use a variational approach to estimate the displacement field between two satellite 
images of sea ice. Komarov and Barber (2014) introduce an automated sea-ice tracking 
system which detect sea-ice drift fields from consecutive RADARSAT Synthetic Aperture Radar 
images (Figure 7). Traditional ice-drift verification is performed comparing point-wise speed 
and direction values: however this approach  does not account for the intrinsic correlation 
existing between nearby grid-point values, and can lead to double penalty errors. 
Neighbourhood verification approaches (e.g. Marsigli et al. 2005) can avoid the double penalty 
issue, and field-deformation techniques (e.g. DAS or image warping) could provide more 
informative feedback on the drift error: they both should be considered for the verification of 
sea-ice drift trajectories. 
 
 

 
 

Figure 7.  Sea-ice drift field detected by the CIS automated sea-ice tracking system  
(Komarov and Barber, 2014) from two RADARSAT cross-polarization (HV) Synthetic Aperture 

Radar images with 12 hours separation, on the 24th of May 2012.   
 

 
Source: Courtesy of Angela Cheng, Canadian Ice Service/Environment Canada 
 
 
In summary, given the challenging spatial characteristics of sea ice, and treasuring from the 
available satellite-based spatially-defined sea-ice observation products, we strongly 
recommend the use of spatial verification approaches (along with traditional verification 
approaches) for the verification of sea-ice predictions. In particular, the following classes of 
spatial verification approaches have been identified: 
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• Distance measures for binary images, pattern recognition and edge detection (such as 
the Hausdorff, Baddeley and Fréchet distances) are suitable to verify sea-ice extent 
and/or assess the distance between the forecast and observation ice-edge. These 
metrics provide physically meaningful and easy-to-interpret verification results (e.g. a 
distance in km), and therefore they are recommended for user-relevant verification. 

• Field deformation (morphing) techniques are already used in sea-ice assimilation and 
tracking to analyse the displacement of the sea-ice field. Some of the field-deformation 
techniques (e.g. DAS or image warping) could be exploited for the verification of sea-
ice concentration, thickness and sea-ice drift trajectories. 

• Feature-based verification techniques (e.g. CRA, MODE or the SAL score) are suggested 
for verifying the motion and displacement of isolated icebergs and large floes.  

• As (largangian particle-based) sea-ice models develop towards explicitly resolving size 
and evolution of individual floes (as opposed to floe-size distribution), feature-based 
techniques (e.g. SAL and MODE), along with scale-separation techniques, can also be 
exploited for assessing the ability of the numerical prediction systems in reproducing 
the sea-ice floe multi-scale structure. 

• Neighbourhood verification approaches (e.g. the Fraction Skill Score) can be applied to 
the verification of sea-ice concentration, thickness and drift trajectories, to avoid double 
penalties while accounting for small sea-ice drift errors. Neighbourhood approaches 
enable the treatment of deterministic sea-ice forecasts as probabilistic products, so that 
probabilistic scores can be used for their evaluation. 

 
A review of spatial verification techniques (with associated key references) is given in Annex A. 
 
Sea ice is one of the most obvious indicator of climate change (Stroeve et al. 2007; 2012). 
Satellite observations of the Arctic sea ice cover are systematically produced since the late 
1970s. These observations show that the Arctic minimum sea-ice extent (which occurs in mid-
September) exhibits a significant downward trend since then. The sea-ice deplation is clearly 
visible also in seasonal outlooks, further than in decadal and climate projections. The presence 
of secular trends in verifying data can affect verification results. As an example, Sigmond et al. 
(2013) show that the skill (as measured by the correlation coefficient) of the seasonal forecast 
of Arctic sea ice is dominated by the downward trend of sea-ice area associated with global 
warming. This result occurs because the correlation coefficient is a measure of linear 
dependence, and when the observed and forecast variables are dominated by a similar 
(increasing or decreasing) trend, the correlation coefficient will be also dominated by such a 
trend, and will exhibit high skill. Sigmond et al. (2013) show that once the trend is removed 
from the forecast and verifying observation, the skill in predicting the variation of the seasonal 
sea-ice area is significantly reduced. Sea-ice verification practices must account for not-
negligible climate trends, especially if the focus of the verification is the assessment of season-
by-season accuracy (associated with the inter-annual variability), beyond the secular trend. 
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4.  CONCLUSIONS 
 
Verification in polar regions is a complex problem, presenting many challenges and, therefore, 
many opportunities for research and new development. In this report we have identified some 
possible new avenues and key research foci in verification methodology, including:  
 
1. Development of verification approaches which account for observation uncertainties 

(due to measurements, retrievals and gridding algorithms, spatio-temporal sparseness 
and sampling uncertainty). Observation uncertainty is a non-negligible component of 
the forecast error, especially in polar regions. 

2. Assessment of the impact of using model-dependent analyses (as opposed to 
observations) for verification; this includes studies which further explore the feasibility 
of using a multi-analysis approach for verification purposes, and considering 
representativeness and observation uncertainty estimates from data assimilation. 

3. Design of specific process-based model diagnostics to identify shortcomings in the 
numerical model representation of key polar processes. Model diagnostics usually aim 
to analyse all physical aspects in representing a few well observed case studies, and  
involve verification of process-specific physical variables (e.g. radiation, momentum 
and energy fluxes): these physical processes and variables need to be identified, and 
the verification strategy needs to be outlined, in close collaboration with model 
developers. 

4. Exploration of the use of multi-variate statistics, conditional (e.g. process-specific) 
verification and spatial verification (e.g. scale-separation and field-deformation 
approaches) to better understand the physical nature and sources of model systematic 
errors in the polar regions. 

 
Sea ice represents a key variable in polar regions both for numerical modelling (as it provides 
a boundary forcing for both atmospheric and ocean prediction, and acts as a buffer regulating 
ocean-atmosphere interactions), and for decision-makers and end-users (e.g. to guarantee 
safety in the maritime transport sector). Sea ice is also one of the variables most strongly 
affected by climate change. Sea ice is characterized by a range of attributes (e.g. 
concentration, extent, thickness, pressure, location of the edge, drift), which are each 
associated with specific verification challenges. Sea-ice verification can benefit from the 
existence of several satellite-based spatially-defined sea-ice observation products, which 
enable the application of spatial verification approaches. Spatial verification approaches 
address some of the issues associated with traditional point-by-point verification (e.g. double 
penalties) and have enhanced diagnostic power (e.g. they can assess distance errors in km): 
spatial verification approaches can provide user-relevant, informative and meaningful 
verification diagnostics for sea-ice prediction. 
 
Traditional summary verification statistics will be used to monitor and compare different 
numerical models contributing to YOPP, and to characterize predictability limits in polar 
regions. For the basic surface and upper-air atmospheric variables, YOPP should meet the CBS 
verification standards (Tables 1a,b). Where YOPP benefits from more frequent surface and/or 
upper-air observations, verification initial times and frequencies should be adapted 
accordingly. Traditional continuous and categorical scores, and probabilistic verification 
statistics should be complemented with extreme dependence indices and the more recent 
ensemble verification statistics. Simple, yet informative, summary statistics and meaningful 
graphical displays are essential for a correct interpretation of the verification results. 
Aggregation of the verification results over a large data sample helps attaining statistically 
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robust verification statistics. However this must be complemented by the application of 
physically meaningful stratifications. Inference (statistical significance and confidence 
intervals) of verification results should be regarded as a standard procedure. Non-parametric 
re-sampling methods (e.g. bootstrapping with suitable choice of block length) provide an 
intuitive and distribution-free approach for performing statistical inference on verification 
results. 
 
Apart from sea ice, this report has not focused on specific variables but attempted to 
characterize suitable verification methodologies in more general terms. However, one critical 
variable which will require more study (with tailored verification approaches) in the 
forthcoming years is snow at the surface: similarly to sea ice, this variable has crucial 
importance both for modelling (as it regulates all the land-atmosphere flux exchanges, and the 
albedo and radiation budget) and from an end-user perspective (e.g. for land transport). 
Representation of clouds (especially low-level mixed-phase clouds) in the polar regions is also 
a key process which needs to be specifically addressed (the physical feedback on the radiation 
budget due to the presence of clouds is possibly the most uncertain feedback process in 
climate modelling): recent advancements in satellite observations of cloud composition offer 
the potential of enhanced verification diagnostics for cloud representation in numerical 
prediction systems. Increased attention in forthcoming years should be also given to the 
validation of how numerical models reproduce teleconnections, stratosphere to troposphere 
propagation, and linkages between polar and mid-latitude weather. A simple example is to use 
Hovmoller diagrams to detect flow-dependent error propagation; similarly, backtracking can 
identify the sources of such flow-dependent error. More sophisticated verification efforts could 
explore a conditional verification based on specific weather regimes (e.g. by applying cluster 
analysis to self-organizing maps and/or analysing composites), analyse how weather features 
in different geographical regions and at different times are inter-correlated, and verify whether 
numerical models correctly represent these inter-correlations. 
 
For further reading on forecast verification we suggest Jolliffe and Stephenson (2012) and the 
verification chapter in Wilks (2011) for basic concepts and traditional approaches. The 
verification webpage http://www.cawcr.gov.au/projects/verification maintained by the WMO 
Joint Working Group on Forecast Verification Research (JWGFVR) includes a concise review of 
basic and more advanced techniques, and provides a vast list of references and links to 
verification-related web-sites. The WMO webpage https://www.wmo.int/pages/prog 
/arep/wwrp/new/Forecast_Verification.html includes past JWGFVR publications with 
recommendations for the verification of clouds and precipitation forecasts. The MesoVICT 
webpage http://www.ral.ucar.edu/projects/icp/references.html includes a list of more than 
200 peer-reviewed publications on spatial verification techniques. The Meteorological 
Evaluation Tools (MET, http://www.dtcenter.org/met/users/) is a freely available verification 
package developed at NCAR which includes traditional verification methods (continuous, 
categorical, probabilistic and ensemble) and spatial verification techniques, supports GRIB and 
netcdf files, handles operational size data loads, and could be used for YOPP verification 
purposes. Finally, the review articles of Ebert et al. (2013) and Ebert and Brown (2015) outline 
the most recent advancements and future challenges in verification research. 
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ANNEX A 
 
  

A CONCISE REVIEW OF SPATIAL VERIFICATION METHODS 
 
 
Weather variables defined over spatial fields are characterized by a coherent spatial structure 
and the presence of spatial features. Traditional verification scores evaluated across a grid, 
with observation and forecast compared by individually matching grid-point by grid-point 
values, do not account for such spatial structures or the intrinsic spatial correlation existing 
between nearby grid-points. This practice leads, for example, to double penalties (e.g. 
associated with small spatial displacements), which become more and more costly as NWP 
resolution increases (to the extent that high resolution forecasts typically have worse 
verification scores than their coarser resolution counterparts, despite providing more detailed 
and realistic features). To address these issues, several new spatial verification approaches 
have been developed in the past two decades. Although spatial verification methods have 
initially been developed for precipitation forecasts, these techniques can be applied (and 
adapted) to many other variables. Spatial verification techniques aim to: i) account for field 
spatial structure and features; ii) provide information on error in physical terms (meaningful 
verification); iii) assess location and timing errors (separately from intensity error); and iv) 
account for small time-space uncertainties (i.e. avoid double-penalty issues).  
 
Spatial verification approaches can be broadly categorized in five classes: scale-separation, 
neighbourhood, field deformation, feature-based, and distance measures for binary images.  
 

1. Scale-separation verification approaches decompose forecast and observation fields into 
the sum of spatial components on different scales by using a single band spatial filter 
(e.g. Fourier transforms, wavelets, spherical harmonics); then traditional (continuous, 
categorical or probabilistic) verification is performed on each spatial scale component, 
separately. These approaches make it possible to: i) evaluate bias, error and skill on 
different scales; ii) investigate the scale-dependence of forecast predictability (e.g. 
determine the no-skill to skill transition scale); iii) assess the forecast versus 
observation scale structure. Scale-separation techniques provide feedback on physical 
processes associated with weather phenomena on different scales (e.g. frontal systems 
versus convective precipitation; planetary, synoptic and sub-synoptic scales). Scale-
separation techniques have been applied both to weather forecasts (Briggs and Levine, 
1997; Zepeda-Arce et al. 2000; Harris et al. 2001, Tustison et al. 2003; Casati et al. 
2004; Casati, 2010; Casati and Wilson 2007; Jung and Leutbecher, 2008) and climate 
studies (Denis et al. 2002, 2003; deElia et al. 2002; Livina et al. 2008; de Sales and 
Xue 2010; Stamus et al. 1992). 

2. Neighbourhood verification approaches (sometimes known as “fuzzy” verification 
approaches) were specifically developed to reward enhanced resolution in NWP 
systems. High resolution models provide more realistic forecasts than their coarse-
resolution counterparts. Traditional verification approaches based on point-by-point 
observation-forecast matching, however, do not account for small space-time 
displacements (leading to a double penalty) and/or observation uncertainties. High 
resolution forecasts, therefore, tend to score worse than their coarser resolution 
counterparts, possibly due solely to their higher spatial variability. Neighbourhood 
spatial verification approaches address this issue by relaxing the requirement of exact 
forecast location (and timing), and define neighbourhoods of grid-points (both in space 
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and time), within which the forecast and observation are matched. In this fashion both 
forecast (small) space-time displacements and observation uncertainties are accounted 
for. Note that (as opposed to the single-band spatial filter of scale-separation 
approaches) neighbourhoods are obtained by a low-band spatial filter (i.e. smoothing): 
as the neighbourhood size (scale) increases, the exact obs-forecast matching criteria 
becomes more and more relaxed. Within the neighbourhoods approaches, two types of 
forecast-observation matching have been identified: if spatial observations are 
available, then a neighbourhood in the forecast field is compared to a neighbourhood in 
the observation field (no-nf); on the other hand, if observations are only available at 
point-locations (e.g. station observations), then the single observation is matched to a 
neighbourhood of forecast values (so-nf). The data treatments applied within a 
neighbourhood represent different verification strategies: the simplest approach is to 
up-scale (e.g. average) the variable within the neighbourhood, and then perform 
traditional verification (e.g. Yates et al. 2006); Roberts and Lean (2008) verify the 
frequency of the event (defined by thresholding precipitation intensities) within the 
neighbourhood by using the Fraction Skill Score; Marsigli et al. (2005) verify different 
aspects of the forecast versus observation marginal distribution (e.g. mean, max, and 
various quantiles) within the neighbourhood; Theis et al. (2005) use the distribution of 
the neighbourhood values to define probabilities from the deterministic forecast, and 
then apply probabilistic verification approaches; Atger (2001) considers forecast 
precipitation neighbourhoods near single stations (so-nf) and evaluates spatial multi-
event contingency tables and ROC curves (for different thresholds, distances, timing). 
Ebert (2008) provides a very interesting review, comparison, and proposed framework 
for neighbourhood verification approaches. 

 
The next two classes of verification techniques (field deformation and feature based) have as 
common approach the decomposition of the forecast error into displacement and intensity 
error. The displacement error is obtained by translating the forecast until a best match 
criterion with the observation is satisfied, whereas the amplitude error is obtained by applying 
a scalar correction to the translated forecast. Field deformation techniques perform such 
decomposition over the whole field, whereas feature-based techniques evaluate displacement 
and intensity error for paired obs-forecast features. These approaches reflects human thinking 
and eye-ball verification, and are suitable for many end-users because they measure the error 
in physical terms (e.g. distance errors in km) and provide verification results which are of easy 
interpretation. 
 

3. Field deformation techniques use a vector field (which can be interpreted as advection 
or wind field) to deform the forecast field towards the observed field, up until an 
optimal fit is found (e.g. by maximizing a likelihood function). An amplitude (scalar) 
field is then applied, in order to correct the intensities of the deformed forecast field to 
those of the observed field. Field deformation techniques usually perform the error 
decomposition on different spectral components (as for the scale-separation 
approaches): hence they directly inform about small scale uncertainty versus large 
scale errors. Pioneer studies on field-deformation techniques are done by Hoffmann et 
al (1995); Hoffman and Grassotti (1996), Nehrkorn et al. (2003), and Germann and 
Zawadzki (2004), with applications in data assimilation and now-casting. Field 
deformation verification approaches include the Displacement and Amplitude Score 
(DAS) introduced by Keil and Craig (2007, 2009); optical flow, introduced by Marzbar 
and Sandgathe (2010); image warping, introduced by Alexander et al (1998) and more 
developed by Gilleland et al (2010). 
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4. Feature based verification techniques first identify and isolate (precipitation) features in 
forecast and observation fields (e.g. by thresholding, image processing, using 
composites, cluster analysis, etc.), and then assess the displacement and amount 
(extent and intensity) of error for each pair of observed and forecast features. Some 
feature-based approaches also i) evaluate distance-based contingency tables and 
categorical scores; ii) perform verification as function of feature size (scale); iii) add the 
time dimension for the assessment of the timing error. Feature-based approaches 
include the Contigous Rain Area (CRA) technique, introduced by Ebert and McBride 
(2000) and further developed by Grams et al (2006) and Ebert and Gallus (2009); the 
Method for Object-based Diagnostic Evaluation (MODE), introduced by Davis et al 
(2006a,b; 2009); the Structure Amplitude Location (SAL) score, introduced by Wernli et 
al. (2008); the procrustes approach introduced by Lack et al (2010); the composite 
method, introduced by Nachamkin (2004, 2005); and the cluster analysis approach, 
introduced by Marzban and Sandgathe (2006, 2008). 

 
5. Distance measures for binary images were developed in image processing for edge 

detection and/or pattern recognition, and include the Pratt's (2001) Figure of Merit 
(FoM), the Fréchet distance (Alt and Godau, 1995; Eiter and Mannila, 1994), the 
Hausdorff metric and its derivatives, the modified and partial Hausdorff distances 
(Dubuisson and Jain, 1994), the mean error distance (Peli and Malah, 1982), and the 
Baddeley Delta metric (Baddeley, 1992a,b). These distance measures are sensitive to 
the difference in shape and extent of objects. They detect the distance/displacement 
between forecast and observation features, and are not very sensitive to noise. 
Because of these characteristics, these metrics seem suitable for the verification of 
(thresholded) precipitation fields and sea ice, also when comparing forecasts with 
different resolutions. Until recently, few studies have exploited these metrics for spatial 
verification. For example, Schwedler and Baldwin (2011) explore the behaviour of such 
metrics on a set of idealized cases. Gilleland (2011) analyse the behaviour of the 
Baddeley Delta metric in the context of the Spatial Forecast Verification Methods Inter-
comparison Project (SVx ICP), and Gilleland et al. (2008) use it to merge and match 
objects within the MODE algorithm. Venugopal et al. (2005) introduce a precipitation 
verification index that combines continuous verification statistics and the partial 
Hausdorff distance. Zhu et al. (2011) introduce a binary image metric, defined as the 
weighted sum of an overlap distance and the mean displacement between the forecast 
and observation datasets, and apply it to the SVx ICP case studies. In the sea-ice 
research community, Hebert et al. (2015) use distance metrics to evaluate the sea-ice 
edge distance; Heinrichs et al. (2006) apply the Fréchet distance for verifying sea-ice 
edge distance; and Dukhovskoy et al. (2015) explore the suitability of mean error 
distance, as well as Hausdorff and Modified Hausdorff distances for the verification of 
the sea-ice extent. 

 
To understand the capabilities (and limits) of these recently developed spatial techniques, the 
verification research community has coordinated two international spatial meta-verification 
inter-comparisons: the major outcomes from the first Spatial Verification Inter-comparison 
Project (SVxICP) are summarized by Gilleland et al. (2010), and in several scientific articles 
published in a special issue of Weather and Forecasting (volumes 24 and 25) and the Bulletin 
of the American Meteorological Society (volume 91). The second (on-going) Mesoscale 
Verification Inter-comparison in Complex Terrain (MesoVICT, http://www.ral.ucar.edu 
/projects/icp) extends SVxICP by considering several different weather variables (e.g. wind, 
temperatures, etc) in addition to precipitation, and by including ensemble predictions in 



 34  
 
 
addition to deterministic forecasts. Results of these inter-comparison projects are extremely 
useful for the research community itself: in part, they reveal the different diagnostic 
capabilities of the different verification techniques, and often drive the needs for further 
development. In addition, they provide guidance to end-users in choosing the spatial 
verification approaches that are most suitable for their needs.
 
 
 

_______ 
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